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A functional-differential equation equivalent to the infinitely hierarchic system of the coupled equations for
many-point velocity distribution functions in turbulence established by Monin and Lundgren is presented, to be
compared with the Hopf characteristic functional equation which governs the time evolution of a turbulent
velocity field. It turns out that this functional entirely implies the Hopf functional, and vice versa. This
functional allows us to view turbulence in a Lagrangian picture simulated by many-particle dynamics.
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To treat turbulence as an ensemble of incompressible flow
velocity fields governed by the Navier-Stokes equation, Hopf
established a statistical hydromechanics �1� in which the
probability measure of the velocity fields is a functional sub-
ject to a functional-differential equation. On the other hand,
Monin �2� and Lundgren �3� developed independently the
hierarchy of equations for multipoint velocity distribution
functions in a turbulent flow field to grasp the above-
described ensemble from another angle, seemingly in an
easier way. Although turbulence has as yet been too difficult
to approach by either method, it is important to recognize the
exact mathematical relation between the two methods.
People may expect that the so-called Monin-Lundgren �ML�
hierarchy would reach the Hopf equation in the limit when
the number of the points taken in the field goes to infinity.
But how, and in what sense? This fundamental issue in fluid
mechanics is still open. To investigate it, we need to unite the
full infinite ML hierarchy into a single functional-differential
equation. We shall use here the technique by which the infi-
nite Bogoliubov-Born-Green-Kirkwood-Yvon �BBGKY� hi-
erarchy for a many-particle system �4� was replaced by a
single functional-differential equation �5�.

In the ML hierarchy for a wall-free turbulence, the s-point
velocity distribution function Fs�x1 , . . . , ,xs , t�, where x
= �v ,r�, v is the velocity vector at the position r, and t the
time varible, is governed �for s=1,2 , . . .� by the equation
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where � is kinematic viscosity of fluid. Obviously Fs is sym-
metric for an exchange of each argument xi. Here, we intro-
duce the generating functional,
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� � · ·� is

s!
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�y�x1� . . . y�xs�dx1 . . . dxs. �2�

Here, i=�−1; this imaginary factor has been inserted for later
convenience, and y�x� is an arbitrary real function. We define
F0=1, which guarantees

��0,t� = 1. �3�

Then, it is not hard to find from �1� that the time evolution of
� should obey the following single linear functional-
differential equation:
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In other words, Eq. �1� is obtained for any s as the relation of
the coefficient functions of the sth-order terms with respect
to y in both sides of Eq. �4�. Therefore, the infinite ML
hierarchy is mathematically equivalent to Eq. �4� with �5�.

In order for Fs to be the s-point velocity distribution,
however, there are some conditions to be obeyed, as follows.
Reduction condition:

� Fs+1�x1, . . . ,xs+1,t�dvs+1 = Fs�x1, . . . ,xs,t�; �6�

when s=0, the right-hand side is unity by definition. This
gives the normalization condition of probability.
Coincidence condition:
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� Fs+1�x1, . . . ,xs+1,t���rs − rs+1�drs+1

= Fs�x1, . . . ,xs,t���vs − vs+1�; �7�

this may be rewritten as

� Fs+1�x1, . . . ,xs+1,t���rs − rs+1�dxs+1 = Fs�x1, . . . ,xs,t� .

�8�

Separation condition: When some points are very far apart
from the others, the distribution function for them becomes
independent of that for the others. If all points are apart this
way, we must have

Fs�x1, . . . ,xs,t� = F1�x1,t� . . . F1�xs,t� . �9�

Divergence condition: Since we treat an incompressible flow,
the average velocity is divergence-free at any point,

�

�ri
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for 1� i�s.
These conditions are expressed in terms of � successively
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It is to be noted that they are all linear equations with respect
to �.

Now let us consider the functional Fourier transform of �,
using functional integration �see �5�� that may be defined as

p�f�x�,t� =� exp− i� f�x�y�x�dx���y�x�,t��y , �11�

where f�x� is an arbitrary real function in x. Inversely, we
may have

��y�x�,t� =� expi� f�x�y�x�dx�p�f�x�,t��f . �12�

If we insert this into the basic equation �3�, we have the
first-order functional-differential equation,
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where we note that a partial functional integration �with re-

spect to f��5� has been used, assuming that p→0 as �f �→�.
This equation is fortunately much simpler than the counter-
part for the BBGKY hierarchy because that is a second-order
functional-differential equation �6�; the second-order
functional-differential term which stems from the short-range
interaction between particles in the Liouville dynamics and
is essential to viewing the irreversible aspect of development
of the system leading to the H theorem. There is not such a
sophisticated situation here in �13�.

It is apparent that Eq. �13� implies the nondiffusive con-
servation law of p�f �as a measure� in the function space of
f; the right-hand side indicates minus the functional-
divergence of the flux of the measure density p. Therefore,
the total prefactor function of this flux should give the time
rate of an individual position f moving in the function space,
that is

�f�x�
�t

= − v ·
�f�x�

�r
+� �

�v
· ��x,x��f�x�f�x��dx� � Qf�x� .

�14�

Note that Q is a nonlinear operator to f�x�. Conditions
�6��– �10�� restrict f�x� through Eq. �12� successively as fol-
lows:

� f�x�dv = 1, �6��

� f�x�f�x����r − r��dx� = f�x� , �8��

which is equivalent to �6��,

p�f�x�,t� = ��f�x� − F1�x,t�� , �9��

which is a very rare case of p, and

�/�r ·� vf�x�dv = 0. �10��

Thus, Eq. �14� essentially associated with �6�� and �10�� is
seemingly a kinetic equation for an ensemble of particles in
the x space subject to a self-interactive force characterized by
the operator ��x ,x��; just like the Vlasov equation in kinetic
theory �7�. Lundgren �3� called this “an effective field colli-
sionless Boltzmann equation” as the first approximation to
the equation for F1�x , t� �by neglecting the additional effect
of F2�x , t�� and showed that ���x ,x��f�x��dx� involves the
pressure force and viscous resistance to a flow particle. It is
easy to make sure in the dynamics �14� that conditions �6��
and �10�� together conserve with time if f�x� at an initial time
subordinates them, only bearing in mind that f�x�→0 as
�v�→�, and that �1/4��� /�r ·� /�r�1/ �r−r���=−��r−r��.
And, these conditions are stronger than the originals
�1��– �4��; hence �1��– �4�� should conserve during the time
development of �. On the other hand, it is clear from �3�,
�12�, and �13� that p�f�x� , t� is a density functional of con-
servative probability measure on the function space of f , and
then ��y�x� , t� is nothing but the corresponding characteristic
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functional for the stochastic scalar field f�x�. We should note
from �2� and �12� that

Fs�x1, . . . ,xs,t� =� f�x1� . . . f�xs�p�f�x�,t��f , �15�

meaning that the ensemble average of sth-order correlations
of the scalar field should give exactly the s-point velocity
distribution functions.

Here, we must see the distinction between us and
Lundgren in methodology; f�x� governed by Eq. �14� is not
to be an approximation to F1 but a member of the ensemble
evolving according to Eq. �13�, which can embrace all Fs by
means of Eq. �15�. Lundgren �8� approximately pursued
F1�x , t� by bringing forth a modeled collision term into Eq.
�14� in analogy with the Bhatnager-Gross-Krook model of
gas kinetics, while there is no such collision mechanism
found here, as is clear from the logical process leading to Eq.
�14�. Since the BBGKY hierarchy is fundamentally different
from the ML hierarchy in mechanical structure, as was de-
scribed above, it is questionable to employ in the latter sys-
tem such a statistical-relaxation model �as a surrogate of the
collision term in the Boltzmann equation, which helped the
former system going towards local thermal equilibrium�. Ac-
tually, the only short-range �nearest-neighbor� interaction of
particles in the dynamics �14� of f�x� must come through the
viscous force, as will be discussed later, and this term only
provides an irreversibility in turbulence in terms of dissipa-
tion.

Then, let us simply rewrite Eq. �4� as

���y�x�,t�
�t

=� iy�x�Q �

i�y�x����y�x�,t�dx . �16�

This is of the same form as the Hopf equation for turbulence
except the operator Q is not the Navier-Stokes operator to
the velocity field, and y�x� is not a three-dimensional vector
field but a six-dimensional scalar function. However, once
��y�x� , t� is solved, it can yield the equivalent to the Hopf
characteristic functional, by specially limiting the argument
into

y�x� = v · ��r� , �17�

as

����r�,t� � ��v · ��r�,t�

=� expi� f�x�v · ��r�dx�p�f�x�,t��f .

�18�

Since �f�x�vdv�u�r� can be considered as a divergence-
free �due to �10��� stochastic velocity vector field, judging
from Eq. �15� and the definition of Fs, then ����r� , t� in �18�
must be the characteristic functional for a velocity field u�r�.
Thus, ��y�x� , t� implies the Hopf functional in itself.

On the other hand, we can easily show that the Hopf
functional implies ��y�x� , t�, as well. Let us assume that we
know ����r� , t�, and set ��r� as

��r� = �
i=1

s

�i��r − ri� . �19�

Then, 	 reduces to the s-point characteristic function of ve-
locity at r1 , . . . ,rs like

�s��1, . . . ,�s,t� =� expi�
i=1

s

�i · u�ri��P�u,t��u ,

�20�

where P�u , t��u is the differential probability measure of the
space of velocity field u�r�. It is clear that Fs in �2� is the
inverse Fourier transform of �s, and hence we can produce a
full form of ��y�x� , t� in the limit of s→�, using this knowl-
edge from ����r� , t�. Then, the equivalence of both func-
tionals has been established here.

Based on the theorem of probability conservation in the
function space as in the Hopf theory �1�, the formal solution
of Eq. �16� is given as

��y�x�,t� =� � exp�i� �y�x�Tt−t0 − y��x��f�x�dx�
���y��x�,t0��y��f , �21�

where Tt−t0 is the solution operator of Eq. �14� starting from
f�x� at the initial time t0, such that

Tt−t0f�x� = limN→��1 + 
tQ�Nf�x� , �22�

where N
t= t− t0. Indeed, it is evident that �21� satisfies the
basic equation �16�; that is because

���y�x�,t�
�t

=� iy�x�
�

�t
�Tt−t0f�x���� in �21��dx ,

=� iy�x�Q�Tt−t0f�x���� in �21��dx , �23�

by means of Eq. �14�, and the last equation is equal to �16�.
Now, let us see what the content of our functional is. The

function f�x� governed by Eq. �14� is suitable to be called
“density” of particles in the x space. In fact, the characteristic
curves of Eq. �14�,

dr/dt = v ,

dv/dt =� ��x,x��f�x��dx�, �24�

are considered to give the Lagrangian paths of all the fluid
particles moving in the x space. This may offer an approach
to turbulence based on the concept of molecular dynamics,
only if f�x�� in the right-hand side can be simulated by the
smoothed density of extremely many particles in the x space
at every time. But, the elementary dynamics between par-
ticles is far different from a usual one with the Boltzmann-
type collision. Our interaction between particles is executed
by nonconservative, nonlocal �pressure�, and local �viscos-
ity� forces.

Apart from practical utility, a crude idea of motion of N
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particles in the system may be given by roughly expressing
f�x� in �14� as �i��v−vi�t��U�r−ri�t�� /N, where U�r�=1 for
r=0 and otherwise vanishes. Then, it yields a closed dynami-
cal system governed by

dri/dt = vi,

dvi/dt = −
1

4�
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�ri
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where the first sum �� should avoid the self-interaction for
j= i, and the second sum �� is taken over only the six par-
ticles nearest �in the r space� to the ith particle; this sum
approximates the Laplacian on the fictitious field v�r� near
r=ri, which is, indeed, a central-difference scheme for the
Laplacian when the six points are located at the face-center
positions of the cube involving the ith particle at its center.
The initial condition for particles should be given as a dis-

crete approximation to an arbitrary solenoidal smooth field
v�r�. The number N need be large enough for the average
interparticle distance to be less than the Kolmogorov length.
In such an approximation, it is convenient to adopt the cyclic
boundary condition for the case of wall-free turbulence. This
idea is, however, an extreme simplification and may not al-
ways be a good approach to Eqs. �24�. But, it would be an
easy-to-understand picture of the theoretical implication of
our functional equivalent to the infinite ML hierarchy. Nev-
ertheless this scheme of particle dynamics may tempt us to
practice a direct calculation to investigate the problems of
relative diffusion and mixing in turbulence, if with a capa-
cious supercomputer.

In conclusion, we have presented a functional-differential
equation equivalent to the infinite ML hierarchy and proved
that the dependent functional in itself is the characteristic
functional of a stochastic six-dimensional scalar function
f�x�, and that it is equivalent to the Hopf characteristic func-
tional of velocity field in turbulence.

�1� E. Hopf, J. Ratl. Mech. Anal. 1, 87 �1952�.
�2� A. S. Monin, J. Appl. Math. Mech. 31, 1057 �1967�.
�3� T. S. Lundgren, Phys. Fluids 10, 969 �1967�.
�4� For example, Uhlenbeck’s lecture in M. Kac, Probability and

Related Topics in Physical Sciences �Interscience Publishers,
Inc., New York, 1959�.

�5� I. Hosokawa, J. Math. Phys. 8, 221 �1967�.
�6� I. Hosokawa, J. Math. Phys. 11, 657 �1970�; in Path Integrals,

edited by G. J. Papadopoulos and J. T. Devreese �Plenum
Press, New York, 1978�, p. 455.

�7� A. A. Vlasov, J. Exp. Theor. Phys. 8, 291 �1938�; Many-
Particle Theory, Moscow-Leningrad, �1950�, trans. AEC-tr-
3406, Washington D.C. �1959�;also see T. Y. Yu, Kinetic Equa-
tions of Gases and Plasmas �Addison-Wesley, Reading, MA,
1966�, p. 128.

�8� T. S. Lundgren, Phys. Fluids 12, 485 �1969�.

BRIEF REPORTS PHYSICAL REVIEW E 73, 067301 �2006�

067301-4


